Crypto Bluebook

Version 1.3.2

data
4life

Contents

Personal Health Data Platform

Introduction

1.1 End-to-end encryption
1.2 Documentstructure

Cryptographic basics

2.1 Symmetric encryption L.
2.2 Asymmetricencryption
2.3 Hybrid encryption

Secure keys

3.1 Keysoverview
3.2 Accountcreation
33 Login
3.4 Accountrecovery
35 Keymaps

Data model and data access

Data ingestion

5.1 Onboarding
5.2 Documentupload
5.3 Document accessbyclient

Data donation

6.1 Requirements
6.2 DesignDecisions
6.3 Registerasadonor
6.4 Donateadocument
6.5 Revocation

Formal treatment

Cryptographic notation

Copyright 2020 D4L data4life gGmbH. All rights reserved.

14

............. 14
............. 17
............ 19
............ 20
............. 21

23

27

............. 27
............ 28
............ 29

30

............ 30
............. 31
............. 31
............ 35
............. 37

41

42

CONTENTS
CONTENTS

8 Account creation

Il Appendices
A Bibliography
B Glossary

C Change history

D Acknowledgments

List of figures

2.1 Symmetric encryption and decryption
2.2 Asymmetric encryption and decryption
2.3 Hybrid encryption and decryption

3.1 Key encryption relationships.

3.2 Keys and key ciphertexts involved to decrypt a document

3.3 Download of recovery key during account creation
3.4 Exampleofkeymaps

4.1 Datamodelexample.
4.2 Data layout for a encrypted records and attachments
4.3 Data decryption flow for readingarecord
4.4 Data decryption flow for reading an attachment

6.1 Userregistersasdonor.
6.2 Userdonatesdocument
6.3 User revokes donationconsent.

8.1 User accountcreationdata

Copyright 2020 D4L data4life gGmbH. All rights reserved.

46

49
50
52
54

55

LIST OF FIGURES
LIST OF FIGURES

List of tables

3.1
3.2

4.1

5.1

7.1
7.2
7.3

8.1
8.2
8.3

Encryption relationships of differentkey types 16
Data elements of account creation 19
Data elements stored forarecord 24
Ciphertexts sent to the server by two parties 28
Different types of cryptographic symbols. 43
Superscripts indicating subtypes of cryptographic symbols. 43
Examples of the cryptographic notation. 45
User data required for account creation 46
Automatically generated data by theclient. 47
User registration payload that gets sentto the server. 47

3 LIST OF TABLES

Copyright 2020 D4L data4life gGmbH. All rights reserved. LIST OF TABLES

Part |
Personal Health Data Platform

Copyright 2020 D4L data4life gGmbH. All rights reserved.

1 Introduction

Data4Life develops and operates a data platform called Personal Health Data Platform
(PHDP) that uses end-to-end encryption (E2EE) to allow users to securely store
and access healthcare data, receive healthcare data from external sources (like
hospitals), and selectively share data with third parties (like doctors or other healthcare
professionals). This document describes the cryptographic protocols’ that implement
the above-mentioned data-related tasks.

1.1 End-to-end encryption

Before users can access our platform, they must first register and validate an account
with us. This establishes a private and end-to-end encrypted data storage that can
be accessed by the applications we offer. By an application we refer to either a
browser-based application or a native mobile app. In most cases we will collectively
refer to them as client applications, or just clients. We will often refer to the private
data storage as just the server.

Users may, for example, select documents from hard disk and upload them into
their data storage. The documents can later be downloaded again. At no point in time
does Data4Life get access to the unencrypted data. Data is always encrypted on the
client before it is transmitted to the server. Similarly, when downloading documents,
the encrypted data is sent from the server to the client where it is decrypted and
displayed.

In addition to manually uploading documents, users can also grant one or more third
parties append-only access to their data storage. This way, a hospital may transmit
discharge letters or similar documents directly into the users’ data storage. Apart from
granting append-only access once, no further user interaction is necessary.?

1.2 Document structure

Chapter 2 introduces cryptographic concepts required to follow the subsequent chap-
ters:

"We adopt the notion of a cryptographic protocol from [10] and consider them to “consist of an exchange
of messages between participants.”
2And, of course, users can revoke that write-only access at any time.

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 1. INTRODUCTION

e Chapters 3 and 4 describe the internal data model and the protocols for user
data upload and user data download.

e Chapter 5 explains how third parties can securely write into users’ data storage.

e Chapter 6 explains how users can donate data to the Analytics Platform (ALP).

6 1.2. DOCUMENT STRUCTURE
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 1. INTRODUCTION

2 Cryptographic basics

We assume the reader has enjoyed some elementary exposure to the topics of
cryptography. This document is no attempt to provide a thorough treatment of the
theoretical and practical underpinnings of the vast field that is cryptography. We
will briefly revisit the topics that are required to follow the next chapters. For further
reading we refer to the standard literature [2, 10, 17, 14, 20].

2.1 Symmetric encryption

Encryption is the principal goal of cryptography; it makes data incomprehensible in
order to ensure its confidentiality [2]. The data or documents to be encrypted are
also often referred to as messages or plaintexts. An algorithm called a cipher gets as
input the plaintext and a secret (the key) and produces the encrypted output called
the ciphertext.

If the same key is used for encryption and decryption, we are dealing with symmetric
encryption and a symmetric cipher. Figure 2.1 illustrates this scenario. As it is
customary in cryptographic literature, we use special given names when denoting
the participating parties in a cryptographic protocol. As usual, Alice wants to send a
secret message to Bob across an insecure channel which might be eavesdropped on
by some malicious party Eve.

Both Alice and Bob share the secret key k. Alice uses the encryption function Enc of
some symmetric cipher to encrypt message m with key k to produce the ciphertext C
which gets sent across the insecure channel to Bob who uses the same key k and the
decryption function Dec of the symmetric cipher to reproduce the message m from
the ciphertext C.

Data4Life uses the Advanced Encryption Standard cipher with 256-bit keys (AES-
256) for all symmetric encryption.

2.1.1 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is a symmetric block cipher which became a
standard in 2001 [8] after it emerged as the lead candidate in a U.S. government
call-for-algorithms to replace the outdated DES cipher [16]. The block size of AES
is 128 bits, that is, the encryption and decryption functions of it operate on 128-bit

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 2. CRYPTOGRAPHIC BASICS

Alice Eve Bob

-
[X

'SR 'SR
m Enc Dec m
~— C ~—
C := Enc(k, m) m := Dec(k, C)

Figure 2.1: Symmetric encryption and decryption between Alice and Bob.

messages and 128-bit ciphertexts, respectively. AES supports three key lengths:
128, 192 and 256 bits. At Data4Life we exclusively use 256-bit keys and refer to it
as AES-256. Hence, the Enc function (and also Dec) of Figure 2.1 has the following
signature for AES-256:

Encags—_2s6 : {0, 1}2%° x {0,1}128 — {0, 1}1%®

Block ciphers such as AES encrypt only a fixed number of bits at a time. For
longer messages (and in our case a message will be a healthcare document, possibly
as large as an X-ray image) we need to iteratively apply the cipher on consecutive
chunks of the message in order to fully encrypt it (and likewise for decryption). There
are various ways to iteratively apply a block cipher, which is known as the modes of
operation. Modes of operations are encryption algorithms of their own, but they need
a block cipher as a “plugin” to carry out the actual encryption. Note also, that a mode
of operation is not necessarily tied to a specific block cipher. We will discuss some of
them below in the context of AES-256, of course, but any other block cipher would do.

2.1.2 Electronic Code Book Mode (ECB)

A straightforward, but problematic approach to extend AES, or any block cipher, to
arbitrary message sizes is to split up the original message m into n chunks of size
128 bits each' and encrypt those chunks m; individually:

Ci:=Enc(k,m;), for i=1,...,n
m; := Dec(k,C;), for i=1,...,n

While this idea has some desirable properties (encryption and decryption can be
parallelized trivially, and random access to the ciphertext is also possible),? it maps

"We will discuss further down how to handle the case when the message length is not an integer multiple
of the block size, that is, when the last block is not full.

2Assume the message m is an ultrasound video and one wants to fast-forward to, say, the middle. One
does not have to decrypt the first half of the ciphertext to reach the middle, but one can directly seek to
the center block and start decrypting from there.

8 2.1. SYMMETRIC ENCRYPTION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 2. CRYPTOGRAPHIC BASICS

same message blocks to same ciphertext blocks, that is:
mi=mj; < C,‘ = Cj

As a result of this block independence, each repetition of a plaintext block results in
repetition of the corresponding ciphertext block, presenting a cryptographic weakness
by unnecessarily revealing structural information about the message [10]. This
mode of operation is not used in any Data4Life application for its obvious security
compromise. It is included here only to motivate the need for different modes of
operation.

2.1.3 Cipher Block Chaining Mode (CBC)

The main idea to overcome the drawback of ECB mode is to make a ciphertext
block C; not only dependent on its message block m; and the key k, but also on the
previous ciphertext block C;_; and thus indirectly dependent on all previous ciphertext
blocks:

Ci:= Enc(k, m; @ C,',l), for i=1,...,n
mj = Dec(k,C,-) ® Ci_q, for i=1,...,n

Before encryption, each message block m; is combined with the previous ciphertext
block C;_1 using the XOR (&) operation. This effectively randomizes the message
block using the previous ciphertext block. The only question remaining is what value
to pick for Cgy, which is needed to produce the first ciphertext block C;. This value is
called an initialization vector and there are various strategies to pick it [10].

At Data4dlLife we use AES-256 in CBC mode with zero initialization vector to en-
crypt and decrypt so-called tags. The zero initialization vector is used to achieve a
deterministic ciphertext. See Chapter 4 for details.

2.1.4 Padding

The two modes discussed so far essentially “keep the block nature” of the underlying
block cipher. That is, a message is still encrypted and decrypted block-wise using
the block cipher’s encryption and decryption function, respectively. In this scenario it
can happen that the last chunk m, of a message does not have full block size. For
example, a 100-byte message would—assuming AES—result in seven blocks which
all have to be 128 bits in length in order to work for AES. However, the last block
would only contain 32 bits of data, leaving 96 bits unused (800 = 6 - 128 + 32).

Some padding has to be applied to fill up such last blocks without compromising the
security of the cipher and also to enable the receiving party to detect those additional
bits and remove them in order not to confuse them with message data [10]. As we
will see below, there are modes of operation that do not require padding.

9 2.1. SYMMETRIC ENCRYPTION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 2. CRYPTOGRAPHIC BASICS

2.1.5 Output Feedback Mode (OFM)

Even though Output Feedback Mode is not used at Data4Life, we use it here to
motivate certain properties of GCM (which we describe in the next section), which is
used to encrypt all data (except tags). OFM does not use the block cipher to directly
encrypt the message. Instead it uses the encryption function Enc of the block cipher
to produce a pseudorandom key stream k;. The actual encryption is implemented by
XORing the message bits (interpreted as a message stream) with the corresponding
bits of the key stream. Decryption is carried out by XORing the ciphertext bits with the
same key stream bits.

Ci:=m; @& k ki = Enc(k, k,‘-l), for i=1,...,n
m;:=C; @ k; ko =1V

Since the XOR operation is carried out on bit level, no padding is required. This
essentially constructs a stream cipher out of a block cipher. Also note that the
decryption function of the underlying block cipher is never used. The receiving party
must just recreate the exact same key stream to decrypt the message. Hence, the
same mechanism for creating the key stream must be carried out on both sides.

The initialization vector IV must be unique for each message and must never be
repeated because it determines the key stream (together with the key k, or course).
The initialization vector is typically prepended to the ciphertext stream. It must be
unique, but it is not kept secret.

2.1.6 Galois/Counter Mode (GCM)

Using Galois/Counter Mode [7] constructs a stream cipher from the underlying block
cipher. It also has another feature which the modes discussed above did not exhibit:
authenticated encryption. All encryption ciphers and modes discussed so far catered
for one thing only: message confidentiality. However, there is no means to detect
errors or malicious modifications in the ciphertexts. That is, if a bit flipped in the
ciphertext, the receiver Bob would still get a result from the decryption. Only this
result would be different from the original plaintext that Alice sent. However, it would
be up to Bob to detect whether the decrypted message has changed from its original.
From the cipher and mode algorithm point of view, everything worked out fine. After
all, the XOR operation and the internal workings of AES operate on bit level and do
not care about any higher-level format.

For the receiver of a ciphertext it is desirable to learn from the decryption algorithm
whether every bit has made it through the communication channel unaltered. This
is what authenticated encryption caters to. The output of GCM will not only contain
the ciphertext, but also a so-called authentication tag which acts as a cryptographic
checksum that can be used to detect modifications. To be more precise, GCM
offers authenticated encryption with associated data (AEAD). Alice, in addition to the
secret message m, may also add another piece of information A, which does not get
encrypted, but is covered by the authentication tag.

1 o 2.1. SYMMETRIC ENCRYPTION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 2. CRYPTOGRAPHIC BASICS

The intricate workings of GCM go beyond the scope of this document, but the
following pseudo-code shows the “GCM API” from a programmer’s point of view:?

Encryption: Decryption:
Input: - message m Input: - ciphertext C
- key k - key k
- additional data A - additional data A
- initialization vector IV - initialization vector IV
- authentication tag T
Output: - ciphertext C Output: - message m, or error

- additional data A
- authenticationtag T
(covering IV, C and A)

If Alice wants to send a message m and additional data A to Bob, a random
initialization vector IV is chosen and the concatenation (||) of the following data gets
transmitted to Bob. (The additional data A, if specified, would be encoded into C and
is not explicitly mentioned.)

V|CIT

Again, A is protected by the authentication tag, but not encrypted. At Data4Life
we do not use the additional data A, but only the authentication tag protection of the
ciphertext and initialization vector.

Bob can split the received data into parts IV, C and T. This is possible because
the lengths of the initialization vector and the authentication tag are parameters of the
underlying protocol and must be negotiated beforehand with Alice. Bob can then use
the decryption of GCM to validate the authentication tag 7. If that fails, the decryption
must be aborted altogether because the communication channel must be considered
compromised. Else, he can read the additional data A and decrypt the message m.

2.2 Asymmetric encryption

The main problem to solve with symmetric encryption is key distribution. How does
Bob get hold of key k in Figure 2.1? Alice and Bob must either meet in person or use a
secure communications channel. However, if there already is a secure communication
channel, then why not transmit the secret message m through it in the first place? In
addition, if n people want to communicate with each other (still, assuming confidential
one-to-one communication), then % keys must be exchanged, that is, the number
of keys in the system grows quadratically.

In asymmetric encryption (or, equivalently, public-key encryption) the key for en-
cryption is different from the key for decryption. Each user creates a key pair of two
mathematically linked keys. Data encrypted with one key can only be decrypted using
the other key. One key of the pair will be called the public key and can be distributed

8 Adopted from [3].

1 1 2.2. ASYMMETRIC ENCRYPTION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 2. CRYPTOGRAPHIC BASICS

freely to anybody who wants to send a message. The other key is the private key
which must never be disclosed to the public. Figure 2.2 illustrates this process. Alice
wants to send an encrypted message to Bob. She asks for Bob’s public key Egop and
uses it to encrypt the message. The ciphertext is sent to Bob who can decrypt it using
his private key dgop.

Alice Eve Bob

Egob dBob

l l
m B Dec m

nc

C := Enc(Egop, m) m := Dec(dgop, C)

Figure 2.2: Asymmetric encryption and decryption between Alice and Bob.

That is, the following equality holds for all messages m:
Dec(dgob, Enc(Egop, m)) = m

This approach greatly simplifies the key exchange problem. For a group of n people,
only n public keys need to be shared.

So far we only discussed the mathematical link within an asymmetric key pair that
guarantees that a ciphertext encrypted with one key can only be decrypted with the
other. But we haven’t discussed how to construct an asymmetric cipher around that.
Without going into detail (which is out of scope for this document), the main idea is to
use so-called trapdoor functions to construct an asymmetric cipher. The value of a
trapdoor function can be easily computed, however, the inverse is hard to impossible
to compute without a certain secret piece of information.

The most widely used implementation of such a public-key encryption scheme is
RSA [19] which is based on large integer factorization. To derive the private key from
a public key, an attacker would have to find the prime factorization of a very large
integer N which is the product of two very large prime numbers p and q. There are
other asymmetric ciphers which draw their security from other hard mathematical
problems like, for example, Elgamal [9] which is based on the discrete logarithm
problem. At Data4Life we use the RSA-OAEP encryption scheme [4].

2.3 Hybrid encryption

Symmetric and asymmetric ciphers have certain advantages and disadvantages,
some of them being complementary to both [14]. Some properties in which both
cipher types differ significantly are data throughput, key sizes and key management
effort. Symmetric ciphers are orders of magnitude faster during encryption and

12 2.3. HYBRID ENCRYPTION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 2. CRYPTOGRAPHIC BASICS

decryption. Also, key sizes are typically smaller. Finally, asymmetric encryption
schemes shine when it comes to key management. Because the private key isn’t
shared, the number of public keys to be shared is much smaller compared to a
symmetric key distribution,* and asymmetric key pairs typically have a longer lifetime
compared to symmetric keys.

Therefore, if Alice wants to send some large message m to Bob, in practice the
hybrid encryption protocol depicted in Figure 2.3 is used: Alice randomly generates a
symmetric session key k, which she will only use once for the next communication
with Bob. Alice encrypts the message m using this session key k, thus producing the
ciphertext Cp,, which can safely be sent to Bob. To allow Bob to decrypt the message,
he also needs to securely receive k. This is achieved by asymmetrically encrypting it
using Bob’s public key, thus producing ciphertext Cx. Bob can decrypt k using his
private key and then decrypt the message.

Alice Eve Bob

Egob dBob

m —4 Encs, Enc, Decs, Dec, b—» m
Cmka

Cm = Encs(k, m) k := Deca(dgob, Ck)
Ck = Enc,(Egop, k) m := Decg(k, Cpn)

Figure 2.3: Hybrid encryption and decryption between Alice and Bob.

*If n persons want to communicate one-to-one, then %(n2 — n) symmetric keys need to be exchanged.
Using asymmetric encryption, only n public keys need to be distributed.

13 2.3. HYBRID ENCRYPTION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 2. CRYPTOGRAPHIC BASICS

3 Secure keys

All healthcare data at Data4Life is end-to-end encrypted. That means, any healthcare
data is encrypted on the client before the ciphertexts are sent to the user’s data
storage. Likewise, when transferring data out of the data storage, ciphertexts are sent
to the client where they are decrypted. Furthermore, any communication between
client and server is protected via TLS 1.2 [5] currently. TLS 1.3 is planned for the
future.

In this chapter we will cover the different cryptographic keys used in our protocols.
We use hybrid encryption to encrypt the healthcare data (that is, documents, images
and the like) as described in Section 2.3. So far we exclusively considered healthcare
data or healthcare documents. We stick to this simplification for describing the
encryption mechanisms we use. In Chapter 4 we will introduce the actual finer-
grained data model. However, all concepts discussed below apply there as well.

3.1 Keys overview

When a user first registers her account with Data4Life, she chooses a password wp
which must comply with certain security requirements.’ Each time at login, after
the users was successfully authenticated, the client derives from the password wp
a symmetric key k,E. See Section 3.2 below for a precise description of the key
derivation process.

Each document is symmetrically encrypted with its own data key which is generated
by the client when the document is first uploaded. Data keys must be stored alongside
their document ciphertext in order to be accessible by multiple clients, for example
a browser and a mobile app. Therefore, each data key is symmetrically encrypted
using a common key. The first such common key? is generated during account
creation. A single common key typically protects multiple data keys. Common keys
may be shared with a third-party to allow access to specific documents.® On access

"It must be at least eight characters total length, contain mixed case letters, contain at least one numeric
character (0—9) and at least one special character (such as %, @, or #).

2There might be multiple common keys. This is discussed in Chapter 4.

8Whoever has access to a common key can decrypt all documents whose data keys are encrypted
using this common key, provided this party also has access to the document ciphertexts. The server
uses business logic to restrict access to only those document ciphertexts that the third party actually
was authorized to see.

14

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 3. SECURE KEYS

kP k€ EY K

Figure 3.1: Key encryption relationships.

revocation, only the common key needs to be rotated. This entails re-encrypting on
the client side all data keys the former common key protects. Common key rotation is
a much more efficient process than re-encrypting entire documents with fresh data
keys.

Being part of the encryption chain, the common key must also be stored on the
server. It is asymmetrically encrypted using the user public key which is the public key
of a key pair that is also generated during account creation. Lastly, the user private
key of that key pair is symmetrically encrypted using the password-derived key kFF,
and stored on the server as well.

Let us revisit the key dependencies: Figure 3.1 illustrates the encrypted keys that
are stored on the server. We introduce the following short-hand notation to talk
more concisely about the various keys in use:* Symmetric keys are denoted by a
lowercase k, private keys by a lowercase d and public keys by an uppercase E. The
key type is annotated in the superscript: D for data key, C for common key, U for user
key, F for a functionally-derived key. In Figure 3.1, gray brackets with an offset key
mean that the object in brackets is encrypted using the offset key at the lower right.
The document m; is symmetrically encrypted using its data key k,-D. The data key is
symmetrically encrypted using the common key k¢, which in turn is asymmetrically
encrypted with the user public key EY. The corresponding user private key dV, finally,
is symmetrically encrypted using the password-derived key k,ﬁ. The key k,E is not
stored on the server, but derived in the client each time the user logs in with the
password wp.

Let us practice notation and key relationships yet again, but this time from the client’s
point of view. That is, which steps are to be performed to display a document m;
in the client? Figure 3.2 illustrates this without visual clutter by using the notation
established above. We borrow from Figure 3.1 the convention to abbreviate Enc(k, m)

by {m} . Note how the four ciphertexts in the first row of Figure 3.2 coincide with the
ciphertexts depicted in Figure 3.1.
Ultimately, we want to access the plaintext of document m;. Its ciphertext [m;} 0

is read from the server.® In order to decrypt the document ciphertext, we need

“Chapter 7 will introduce the full notation.
SWe will discuss authorization checks later in Chapter 4. Obviously, the server is not handing out
ciphertexts to unauthorized parties.

1 5 3.1. KEYS OVERVIEW
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 3. SECURE KEYS

kD

—

Figure 3.2: Keys and key ciphertexts involved to decrypt document m;.

mj

Key type Protected/encrypted by
Data key Common key

Common key User public key

User private key Password-derived key
Password Remembered by user

Table 3.1: Protection and encryption relationships of the different key types.

the corresponding data key k,D whose ciphertext {k,p] i is read from the server,
typically along with [m;] 5" To get access to the data key k,-D, we need the common

key k. Its ciphertext [kC]EU is also retrieved from the server, and it requires the

user private key dV to be decrypted. The ciphertext [du} 5 of the user private key
P
is finally decrypted using the password-derived key k,E, which exists in the client

only ephemerally. The diagonal sequence in Figure 3.2 represents the chain of keys
required to decrypt a document. Table 3.1 summarizes the relationships between the
key types.

1 6 3.1. KEYS OVERVIEW
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 3. SECURE KEYS

3.2 Account creation

We demonstrated earlier in this chapter that the encryption of a document and its data
key requires a couple of other keys to be present in the system, namely the common
key, and the public and private user keys.® Those keys are generated during account
creation (or, synonymously, account registration).

The user key pair, consisting of the user private key and user public key, remains
unchanged during a user account’s lifetime. All other keys can be changed by the
user or are rotated during certain operations. When registering a new account, the
user is asked for her e-mail address and a password. A hash of the password is sent
to the haveibeenpwned API [1] to check whether it might be compromised. If the
check passes, the following keys and salts are randomly sampled by the client:

User key pair This is an RSA key pair of length 2048 bits. We denote it by (dV, EV)
and refer to dV as the user private key and EY as the user public key. This key pair
does not change throughout the lifetime of the user account.

Recovery password In case the user forgets her password, it can be reset using
this recovery password. It is essentially a second password wg which is the BIP-39
mnemonic [15] of a random 128 bit number. The user has only one opportunity to
download this recovery password, as a PDF file, during the account creation. The
respective screen is shown in Figure 3.3. If the user loses this password and forgets
her own chosen password, she cannot access the account anymore and all data
becomes undecryptable. An example recovery key might look like this:

grunt runway wet horror tent economy
garment photo pause dice achieve soul

Common key The common key consists of 256 bits of randomness that make up
an AES key. So far we have denoted it as k©, but we will add an index like in k§ for
the remainder of this document, because there may be multiple common keys present
in the system simultaneously. The reasons for this are covered in Chapters 4 and 5.
However, after account creation, there is initially just a single common key.

Tag encryption key As we will see in Chapter 4, each document can have as-
sociated metadata called fags. A tag might contain the document type or other,
non-healthcare data. We symmetrically encrypt those tags with the tag encryption
key kT. This key also remains constant throughout the lifetime of an account.

®1n reality there is one more key involved: the tag encryption key. It encrypts metadata of the document
and we omit it here for brevity. It is explained in Chapter 4.

1 7 3.2. ACCOUNT CREATION
Copyright 2020 D4L data4life gGmbH. All rights reserved. CHAPTER 3. SECURE KEYS

€& Save your recovery key

If you forget your password, the following recovery key lets you reset it.

If you forget your password and lose your recovery key, your account can't
be restored, and you can no longer access your data.

A2 Your recovery key:

there poet youth involve month easily print bread spike genre dwarf sail

DOWNLOAD RECOVERY KEY

C] | understand the importance of my recovery key

C] I've stored my recovery key in a safe place

()

Figure 3.3: The user has exactly one opportunity to download the recovery key during account
creation.

1 8 3.2. ACCOUNT CREATION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 3. SECURE KEYS

Data element Encrypted with

User e-mail address

User password derivative hash
Recovery password derivative hash
User password salt

Recovery password salt

User public key

Encrypted user private key User-password-derived key
Encrypted user private key Recovery-password-derived key
Encrypted common key User public key

Encrypted tag encryption key Common key

Table 3.2: Data elements sent to the server when creating a new user account.

User password salt and recovery password salt Two salt values with 16 bits of
randomness each are generated for the user and the recovery password. The user
salt is used to derive the symmetric key kFF,. The recovery salt is used for a similar
reason, in case the user password is to be reset (see Section 3.4 below).

User password derivative and recovery password derivative The client does
never send raw passwords to the server during account creation or login, but rather
a key derivative of it. We use the output of the PBKDF2 [13] key derivation function
(10,000 iterations with zero salt and SHA-256) as a derivative value.

Clicking “Next” on the screen of Figure 3.3 will send the data given in Table 3.2 to
the server where it makes up the user’s account. Before password derivatives are
sent to the server for storage, they are hashed using bcrypt [18] with a cost parameter
of 10. The resulting hashes are encrypted at rest with a secret server key using AES
in GCM.

3.3 Login

Apart from authentication and authorization, the login procedure serves another
important purpose called client approval. This approval establishes fresh keys for
encrypting and decrypting documents. Any data-related server API endpoint requires
a valid JSON Web Token (JWT [12]) to be contained in client requests. Login and
client approval, if successful, will result in such a JWT.

3.3.1 Authentication and authorization

To log in, the user is asked for her e-mail address and password. The e-mail address
and the password derivative (see Table 3.2) are sent to the server. If the e-mail is
known, the hash of the password derivative matches the one stored on the server,
and a second factor (in our case a PIN received via text message on the phone) was

3.3. LOGIN
Copyright 2020 DAL data4life gGmbH. All rights reserved. 1 9 CHAPTER 3. SECURE KEYS

provided, the user is considered authenticated. The login request will also contain a
list of so-called scopes, which are strings designating specific access rights.” If the
scopes are allowed for the user and the requesting application (that is, the application
that triggered the login), authorization succeeds, and client approval is commenced.

3.3.2 Client approval

As described above, the user key pair is a long-lived key that essentially protects all
other keys in the system (see Figure 3.1, where it is depicted at the end of the “key
chain”).8 Technically, the client could now exercise the flow depicted in Figure 3.2 to
decrypt documents of the user, and also to encrypt new documents when proceeding
in the opposite direction. However, this requires the user private key to be present
in the client for as long as the login session lasts. In order to reduce attack surface,
we decided to require every login session to provide its own ephemeral so-called
application key pair.

Prior to commencing the login process, the client generates a fresh asymmetric
application key pair (d?, ER). (Let the index s denote the word session.) If authenti-
cation and authorization succeed, the server sends the ciphertexts of the user private
key and of all common keys to the client:

U 6] e 5] -)

These ciphertexts are decrypted, re-encrypted using the application public key, and
sent back to the server which stores them:

= " [Kf] o y (3.1)

The client can decrypt any documents that are currently stored in the user account,
regardless which client uploaded them (and, hence, which common keys were used
to protect the data keys). This is because it has access to all common keys that are in
the user account at the moment. The client approval is now complete. The server
will return a JWT that the client must include with all subsequent server calls to prove
authenticity and authorization.

3.4 Account recovery

In Section 3.2 we briefly mentioned that the recovery password, which is created and
downloadable during account creation, can be used to get access to the account in
case the user has forgotten her password wp. Without password wp, no key k,f. can

71t would not be wrong to think of such a scope string as a user role. The notion of a scope is adopted
from the OAuth2 authentication protocol [11].

8You might argue that the user-password-derived key is the most crucial one—and that is correct—
however, the password (hopefully) persists exclusively in the user's memory, and the derived key only
ephemerally in the client.

20 3.4. ACCOUNT RECOVERY
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 3. SECURE KEYS

be derived, which is required to start the “decryption chain® depicted in Figure 3.2.
However, along with [dULF we also generated {du} " and stored it on the server

during account creation. By choosing a dedicated recovery flow during login and by
entering the recovery password wg, the client can decrypt the user private key dY,
ask the user for a new password wpr and send the new ciphertext [du} o back to

P
the server.

3.5 Key maps

So far we have discussed a number of key topics. Before we continue, let us establish
a common understanding of how the server stores key ciphertexts for each user.
Figure 3.4 shows an example. At any given time, a user’s data store contains the
following individual key ciphertexts:

e User private key encrypted with the user password-derived key: [dU] y
P

e User private key encrypted with the recovery password-derived key: [du} 5
R

e Tag encryption key encrypted with the current common key kf: [kT] <

Figure 3.4 depicts these three ciphertexts in the first row (the current common key
is klc). Further, each user account contains one or more key maps (or, more precisely,
common key maps). A key map contains for each asymmetric key pair (user key
pair or application key pairs) the corresponding public key and the ciphertexts of all
relevant common keys encrypted using the respective public key.° One common key
ciphertext in each key map is marked as the key map’s current common key. We
denote this by a little dot above the corresponding ciphertext in Figure 3.4. Finally, a
key map may also contain the ciphertext of the tag encryption key.

There is at least one key map my present in a user account. It holds the user public
key and ciphertexts of all the common keys stored in the system for the user. When a
user logs in, the login session that is established, results in a new key map, like 75
in Figure 3.4. The contents of that key map are the result of the client approval (see
Equation 3.1 above). For example, ms contains the session public key Eﬁ‘ and the
ciphertexts of the three common keys k§, k¢ and k that were present at the time of
client approval. Key map mp, was not created during a login client approval, but during
the so-called onboarding of a third party h (see Chapter 5 for details). For now it is
sufficient to accept that the key maps may contain ciphertexts of several common
keys. There is exactly one dot above one common key in each map, denoting the
current common key for the respective session or third party.

°Relevant means that not every key map contains the ciphertexts of all common keys.

21 3.5. KEY MAPS
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 3. SECURE KEYS

T EU |:k(§:] £
s | EA [koc] A
T | Ep [kﬂ =

Figure 3.4: Example of a user account with three key maps containing ciphertexts of different
common keys. Key map my is present in every account and maps the user public key to the
ciphertexts of all common keys known to the account. Any other key map my contain a subset
of them. Key map s contains the ciphertexts of the same three common keys, while key
map T, contains only the ciphertext of common key k,?. T, also contains the ciphertext of the

tag encryption key.

Copyright 2020 D4L data4life gGmbH. All rights reserved.

22

3.5. KEY MAPS
CHAPTER 3. SECURE KEYS

4 Data model and data access

This chapter describes the full data model of the data storage together with the
cryptographic protocols used to write and read data by a user. We discussed the
main ideas in Chapter 3, but we left out some details covered here.

So far we talked about documents that users can maintain in their data storage, and
that is certainly a metaphor worth adhering to. The actual data model is more granular,
though. There is the notion of a record, which can be considered a folder that contains
so-called attachments. When the user selects one or more files from disk to be
uploaded, a new record is created and the files are stored as associated attachments.
It is not a mistake to consider the unit of a record and its attachments as a document
in the sense we used it so far. Each record can have zero ore more associated fags.
Tags are strings (typically key-value pairs) which can contain operational data such
as a data type. The record itself has a body which is a FHIR resource [6] and as such
essentially just a JSON string.

Figure 4.1 illustrates the relationships. The record r; be a JSON FHIR resource
of type DocumentReference. The three attachments a; 1, a; 2 and a; 3 could be PDF
files, for example. The two tags t; ;1 and t; » be some metadata (for example, tag t; 1
could be uploadedVia=mobile). The attachment IDs, here, exemplary, 1 and 2, but
in reality these would be random UUIDs, are stored inside the record’s FHIR body.

The record body is symmetrically encrypted using its corresponding data key k,-D,
which is used for this record only and nowhere else. In case a record is updated,
a new data key is generated and used.! Each record is associated with a another
symmetric key, the attachment key k,!\', which is used to encrypt all its attachments.
Each tag is symmetrically encrypted using the account-wide tag encryption key k.
As shown in Table 3.1 in Chapter 3 (page 16), the data key (and also the attachment
key) are encrypted using the common key, or, more precisely, the current common
key kXC. For technical reasons we tolerate multiple common keys to be in the system.
However, at any given time there is only one marked as current key and used for
encrypting new data uploaded by the user. Table 4.1 summarizes the data that is
stored on the server for our example record r;.

Record and attachments are encrypted using AES-256 in GCM.? The initialization
vector consists of 12 bytes of randomness and the authentication tag is 16 bytes long.

"Essentially, a record update is deletion followed by creation of a new record.
2See Section 2.1.6 for details.

23

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 4. DATA MODEL AND DATA ACCESS

ti2 kP

kT

kN

Figure 4.1: Data model example.

Data element Formal notation
Encrypted record body M 0

Encrypted data key [kiD} p

Encrypted attachment key [k,'\'] p

Encrypted tags {t"vl}kﬂ {fiz} .
Encrypted attachments [a, de’ [ai,2} . [a, 3} R

Common key ID X

Table 4.1: Data elements stored for a record r; with two tags and three attachments.

24

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 4. DATA MODEL AND DATA ACCESS

The binary payload that gets stored for an encrypted record or encrypted attachment
consists of the concatenation of the initialization vector, the actual ciphertext, and the
authentication tag as depicted in Figure 4.2. Tags are symmetrically encrypted using
AES-256 in CBC mode with the initialization vector consisting of 16 zero bytes.

v Ciphertext Auth’n Tag
(12 byte) (nbyte) (16 byte)

Figure 4.2: Data layout for symmetrically encrypted records and attachments.

Let us now revisit which steps are taken when a user wants to display the attach-
ment a; 1 of record r;. Since the attachment ID is stored in the record body, it must
be decrypted first. This is shown in Figure 4.3 (this chart is essentially identical to
Figure 3.2 up to the namings of some artifacts, like message m; versus record r; and
the like). After decrypting the record r;, the corresponding attachment IDs are known.
This allows to retrieve the ciphertext [a,-,l} " and proceed analogously for decrypting

i

it as depicted in Figure 4.4.

25

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 4. DATA MODEL AND DATA ACCESS

)
1kP kS

S

—

Figure 4.3: Data decryption flow for reading record r;.

ri

P (P S P LA we
F/
dA/
kxc/

—

Figure 4.4: Data decryption flow for reading attachment a; 1 after having read the record r;.

ai1

26

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 4. DATA MODEL AND DATA ACCESS

5 Data ingestion

One way of adding documents to a user’s data storage is to use the web application
or mobile application and upload data manually. This was covered in Chapter 4. We
provide another avenue by which healthcare documents generated by hospitals (such
as doctor letters or discharge letters) can be transferred securely directly into the
user’s data storage.

The main challenge is to enable a third party, for example a hospital, to securely
add documents to a user’s data storage while not allowing them any read access.
As we saw in Chapter 3, a common key protects data keys, that is, data keys are
encrypted by a common key. Any party who holds a common key can decrypt all
documents' whose data keys are encrypted with it. Note, that this argument implies
that a third party would have access to all ciphertexts of those documents, which, in
practice, will not be the case, of course.

The main idea for enabling a third party to add documents is to generate an
additional common key which is securely transferred to the third party for encrypting
the data keys of the new documents. The upload of encrypted documents by a third
party is cryptographically identical to the upload of a document by the user, except
that the common key used for data encryption keys is different. Table 5.1 illustrates
this subtle but important difference. When a user uploads a document, its data key is
encrypted using the current common key (here assumed to be still the initial one kOC).
When a hospital h uploads a document for the user, the data key is encrypted using
the hospital’s dedicated common key k,f. Note that the hospital would hold such a
dedicated common key for each user who granted them write access. That is, we
should more precisely denote the hospital’s common key of user u as (u) k,f to stress
that user binding. In the remainder, however, we assume the user to be implicitly fixed
and omit the (u) decoration.

5.1 Onboarding

Before a third party can add documents to a user account, it has to undergo onboard-
ing in a special type of login process. The third party h generates an application key

"For the sake of simplicity, we again talk about documents, but do, of course, recall, that they consist
of records and attachments (see Chapter 4). Nevertheless, all arguments and ideas put forth w.r.t.
documents in this chapter carry over to records and attachments.

27

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 5. DATA INGESTION

Party Common key Ciphertexts sent for document m;
C . D)
User ko {mj]kjp, [kj]kg’ [tjv*]kT

j' [klp}k;i’ [tj'*]kT

Table 5.1: Ciphertexts sent to the server by user vs. a third party such as a hospital.

Hospital h k&

>
—
3
[
=
o

pair (d?, Ef') and sends the public key E/ to the authentication and login application
at Data4Life.? The application detects that we are in an onboarding flow instead of a
regular login flow, and performs the following steps:

1. Generate a new common key k,f for third party h.

2. Encrypt it using the provided public key: {kﬂ A
h

3. Execute a modified client approval:

e Add to each non-foreign key map my in the user account the ciphertext
of the new common key: {kﬂ o Non-foreign refers to key maps which

do not hold keys for another third party. In other words, do not add the
ciphertext to any key map which was established using this very protocol.

e Add the new key map 7, = (Eﬁ, {[kﬂ EA}> to the user account.
h

e Add to the key map 7, the tag encryption key ciphertext [kT} A
h

4. Allow third party h to read the contents of 7, that is, the ciphertexts [kﬂ A
h

and {kT] o at any later point in time by issuing a JWT that allows requests
h
against the server. See Section 3.3 for details.®

This concludes the onboarding process of a third party.

5.2 Document upload

Adding a document by the third party works as follows:

2The very same web application that implements the account creation, login, client approval and account
recovery flows.

®In fact, we are issuing two tokens: a short-lived JWT for immediate use and a long-lived refresh token,
which can be used at a later point in time to request a new JWT (this is identical to the principles of
OAuth2 [11]). Since the third party will rarely add documents immediately after onboarding, the JWT
will likely expire. It is the refresh token that is kept by the third party and exchanged for a fresh JWT
prior to the actual document upload.

28 5.2. DOCUMENT UPLOAD
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 5. DATA INGESTION

1. Exchange refresh token for a JWT to authenticate subsequent server requests.

2. Request the ciphertexts of mp, from the server: [kE]EA and [kT} o
h h

3. Decrypt ki and kT using the private key df*
4. Encrypt a document m; as usual, that is, produce: {mj} 0 and [kﬂ P
¥ h

5. Encrypt the necessary tags, say, t;1 and t;» with the tag encryption key kT

6. Upload ciphertexts [mj] 0’ {kﬂ khc, [tj’l}kT and |:tj’2:| o to the server.
J
Even though the third party did add a document, there is no way for them to decrypt
any document ciphertext other than the ones they uploaded. Assume the ciphertext
of some document m, leaks. The corresponding data key k? is encrypted with a
common key different from k,? and thus the third party cannot decrypt it. There is no
way for party h to decrypt any other common key. Its key map does not include them
and other key maps, should the party get hold of them via an attack, are encrypted
with public keys other than E%.

5.3 Document access by client

Let us verify that the user can read the uploaded documents using any approved client
(that is, any application for which there exists a key map in the account). We can,
in fact, reuse Figure 3.4 on page 22 to illustrate this. The key map 7, was created
during the onboarding of third party h. Let the key map 75 belong to a session that the
user just logged in to. Assume further, that party h has uploaded a doctor’s letter m;.
In order to decrypt it in the client (session s), the following steps are performed:

1. Download ciphertexts [mj} o and {kﬂkc.
; h

2. Key map 7 contains [kﬂ o Decrypt it using d2 to get .

3. Use kf to get ij, which then is used to get m;.

4. Tags t;1 and t;> can be decrypted, because kT is decryptable via klC which is
in key map 7.

The client, which can only access its session key map 75, can decrypt the data key
because the required common key k,? was inserted into 7, during approval of the
third party onboarding.

29 5.3. DOCUMENT ACCESS BY CLIENT
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 5. DATA INGESTION

6 Data donation

Users of the PHDP can choose to donate (parts of) their data for research purposes.
The research tasks are carried out on the Analytics Platform (ALP). The data is
decrypted on the client, anonymized, re-encrypted, and then transferred into a special
storage where it awaits access by ALP. In this chapter we introduce the requirements
for data donation and discuss the final design.

6.1 Requirements

Let us assume that a user with ID u wants to donate the document m;. Even though
the ID v will be a random UUID, let us assume for the sake of argument, that it is
a more recognizable value like her e-mail address. Similar to other chapters, we
talk about documents for simplicity, but do recall that they consist of records and
attachments (see Chapter 4). All arguments and ideas in this chapter, of course,
carry over to records and attachments. Last, we assume that the document m; was
anonymized by some means.

De-identification One requirement is that donated data must be completely de-
tached from the users’ identities. That is, it must not be possible to correlate the
donated document m; with the user ID u.

Data quality Users may regularly donate documents (that is, not in one batch). In
order to be of value, on ALP side it must be known which documents came from
the same donors." Effectively, each user is assigned another ID vAP (referred to
as ALP ID), under which all donated documents of that user are collected by ALP. It
must not be possible to infer u from uALP.

Consent We need to make sure that at the time of donation users had given consent
to donate their data. In case of a user claiming that we store data without her consent,
we must be able to prove her consent. The consent is bound to the user ID u, because
the donated data is not traceable to the donor anymore.? The donation workflows
must check for a valid consent before accepting data donations.

"Otherwise, longitudinal analyses would not be possible.
2Also, it is anonymized, which means it is no personal data anymore.

30

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

No impersonation Users must not be able to donate data such that it gets associ-
ated under another user’s ALP ID.

6.2 Design Decisions

In order to understand the rationale behind the sequence diagrams in Figures 6.1
and 6.2, we now briefly cover the steps in reverse order, before discussing them in
full detail in Sections 6.3 and 6.4.

After the document m; was donated by user u, the ALP must be able to collect the
ciphertext of m; from a special storage where the donation service deposited it. The
document is encrypted with a special data key k,D°”, which itself gets encrypted with
the public service key of the ALP ER, p. Finally, this data must be associated with
an ALP ID vAtP which is unique and different for each user u. That is, the following
structure must arrive at the donation service to conclude a successful donation of

document m; by user u:®
(. o 17,
ki © EALP

Even though the document m; is anonymized (and thus does not anymore constitute
personal information), we encrypt it for reasons that become clear below. One
challenge is to maintain for each registered donor v an ALP ID without being able to
invert the mapping and resolve the user ID u given an ALP ID uAP. We solve this
problem by introducing for each donor a donation key pair <(”)dD°”, (“)EDO”) which

itself is securely stored in the users PHDP. The public key* EP°" serves two purposes.
First, the donation service maintains a mapping EP°" — uAP, which treats EP°" as
a proxy for the user ID u, without, however, being able to reverse-map it to u. Second,
we are using dP°" to sign the ciphertext of the donated document, which allows the
donation service to verify the data provenance (again, without being able to identify
the user u). We will now revisit the registration and donation processes in full detail.

6.3 Register as a donor

Users must register as donors before they can donate documents. During the
registration a user must give consent to the data donation terms and conditions.
Further, a donation key pair is created for the user, the public key of which will be
assigned to a newly created ALP ID. The sequence diagram in Figure 6.1 illustrates
all steps of a successful registration. Error handling is omitted for brevity, but it is
discussed in the narrative below. In previous chapters we referred to the PHDP and

We use the angle bracket notation (-) to denote a structure of data elements. Think of it as a tuple or
some JSON object.

*We omit the superscript (u) in the remainder, because it is clear that we are discussing everything in
the context of user w.

31 6.2. DESIGN DECISIONS
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

its services simply as the server. The donation solution introduces two new services,
consent service and donation service, which would naturally be covered under the
umbrella of PHDP, and thus, the server. Because they are crucial to the donation
solution, they are depicted alongside the PHDP in the sequence diagrams. The
two aforementioned services and the ALP maintain service key pairs that are used
for either signing data or encrypting requests. The public keys of the key pairs are
implicitly assumed to be known to the client (that is, we do not explicitly draw the key
retrieval requests in the sequence diagrams to save space) and all services. The key
pairs are denoted as follows:

Consent service (CS): (déonSig, EéonSig)
Donation service (DS): (dgon, E80n> and <d[s)onSig' EgonSig)
Analytics Platform (ALP): (dRip, ERip)

6.3.1 Steps 1-7 : Request consent

If a user want to become a data donor 1, she must give her consent to the current
data donation terms and conditions. The client requests the latest version of the
consent narrative £ in step 2. The consent service caters for different types of user
consents, not only for data donation. The value £ is a placeholder for a specific type
of consent narrative which exists in different versions, the latest being version V.
Hence, the consent service returns the latest narrative of the donation consent Té in
step 3. The user approves the consent (4) and this fact together with the current
timestamp 7 is sent to the consent service (5) which stores it in a consent database
(6, 7). If the user rejects the consent, the donor registration process is aborted.

6.3.2 Steps 8 — 10 : Create donor key pair

The client now generates a new asymmetric key pair (dD"“, EDO”) in step 8 and
stores it in the user's PHDP records (9, 10). This key pair is used for each
subsequent document donation.

6.3.3 Steps 11 — 18 : Sign registration request

As mentioned in Section 6.2 above, the goal is to let the donation service generate
a new ALP ID and associate it with the key EP°" (or detect that the user is already
registered as a donor and abort the registration). Also, the donation service must
make sure that the key EP°" belongs to an existing user (and not some attacker trying
to spam the database) who has given the correct type of consent.

The donation service API cannot be authenticated using the PHDP access token
(JWT) that was discussed in Section 3.3.2, because it contains—among other things—
the user ID u, which must never reach the donation service in any way. The donation

32 6.3. REGISTER AS A DONOR
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

X

‘ DS:Donation Service ‘ ‘ CS:Consent Service

User:u ‘ UA:Browser ‘
1 1 _want to be dongg

PHDP

Consent)

2 fetch latest version of consenttype § —

3 consent text Té (version V)

p 4 agrees to Té

5 send consent (u,&,V, T) —

A 4

] 6 store (u,§,V,T)

Donor Reg.

‘ 8 generate donor. key pair (d°°", EP°n)

9 store donor key pair (dP°", EPo")

:| 14 M = [(u ED"">]ES

15 request signature of (M, &) —

A

o 12 random nonce v

Don

20

Copyright 2020 D4L data4life gGmbH. All rights reserved.

activate M’ —

A 4

check that v is not al-

] 161 ready registered

< 16.2 check consent for u

) 16.3 store u as registered

18 ome 17 opme == signdgonﬁg«M, &)

19 M';:k»mgaMfﬁ i

22 check consent type &

23 verify op ¢

25 validate v

26 generate uP

28 OK_ | e 27 store EDon s (ALP

Figure 6.1: User registers as donor.

w

21 decrypt: (M, &, ome) = M' ® d3,,

24 decrypt: (v, EP") := M ® df,,

3 6.3. REGISTER AS A DONOR
CHAPTER 6. DATA DONATION

service issues a random nonce v instead (11 — 13), which acts as a short-lived
session ID for the remainder of the registration process.

The client now creates the message M by encrypting both the users donation public
key and the nonce with the donation service public key (14):

M= [E5)] g5

If we sent this ciphertext to the donation service already now, it could decrypt it
using dgon and proceed checking for an existing ALP ID for EP°" (in which case we
would abort the registration process, otherwise proceed and associate a new ALP ID
with EP°"). However, there would be no way to verify whether the user gave her
consent. Remember, the key EP°" cannot (and must not) be back-traceable to the
user ID u. However, consent is given and recorded only under such user IDs (and
never under a donation public key).

This is why the ciphertext M is sent to the consent service (15) which is requested
to provide evidence (in form of a signature) that user v agreed to the consent narrative
of type &°. Step 16.1 checks whether the user u is not already registered as a donor.
If the lookup in the consent database for user u and consent type & succeeds (16.2),
user u is remembered as registered® (16.3), and the pair (M, §) is signed using the
consent service private key déonSig (17). The resulting signature o ¢ is returned to
the client (18).

6.3.4 Steps 19 —29 : Activate registration

Now that we have a signed version of the donation public key EP°", we could send it to
the donation service, which in turn could verify that the user (whose real identity u the
service will never know) did, in fact, give the right consent. This would, however, entail
sending M and ¢ over the network for a second time (it did already leave the client in
step 15). An attacker knowing the registration protocol (which is not secret) could
detect this and learn important information from it. This is why step 19 encrypts the
data (now also including the signature o¢ a second time with the donation service
key E3.,,» producing ciphertext M':

e onconel - [([n e com]

Don Don

This ciphertext is sent to the donation service (20) which can decrypt the following
data elements (steps 21 and 24):’

v, EDon, gy ome

The donation service carries out the following verifications (the order does not
matter, all checks must pass):

®As mentioned earlier, think of £ as the narrative type “donation consent”.

A new registration is possible only after waiting period has passed after a deletion proof was received.
See Section 6.5 below.

"We denote decryption of ciphertext M using key k by M ® k.

34 6.3. REGISTER AS A DONOR
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

e 22 Check that the consent is of correct type £.

e 23 Verify signature oy ¢ using EéonSig against (M, §). That is, verify that
consent was given.

e 25 Check whether the nonce v is, in fact, one that was issued by the donation
service recently.

I all checks pass, the donation service can generate a new ALP ID A" (26) and
store it for key EP°" (127). This concludes the donor registration process (steps 28
and 29 being just formal returns).

6.4 Donate a document

After users have given consent and are registered as a donor, they can donate
documents. We illustrate the donation of a document m; by user u in Figure 6.2. As
mentioned above, we assume the document m; was anonymized in the client.

6.4.1 Steps 1-12: Prepare donation

The user selects document m; for donation (1), after which the client retrieves the
donation key pair (dD°”, ED°") from PHDP (steps 2 and 3). Note, that this is
simplified, because data access follows the protocol described in Chapter 4, that is,
we would read the ciphertexts of records, attachments and data keys, and decrypt
them using the common key.

Similar to steps 11 — 13 in Figure 6.1, we request a random nonce v (steps 4 —6)
that acts as a short-lived session ID for the subsequent communication with the
donation service.

Steps 7 — 12 are identical to steps 14 — 19 in Figure 6.1.

6.4.2 Steps 13 -15: Encrypt and sign document

The client generates a symmetric key k,-D°“ in step 13 which is used to encrypt the
document m; in step 14, producing the ciphertext C;. This ciphertext is signed using
the user’s private donation key dP°" (15) which results in the signature oc;. This
signature is later verified by the donation service.

6.4.3 Steps 16 — 26 : Verify and store donated document

The following data elements are sent to the donation service in step 16 :

S PIRE D I L Pl L P

Don

35 6.4. DONATE A DOCUMENT
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

X

User:u
1

DS:Donation Service ‘ ‘ CS:Consent Service PHDP

donate m;

2 ‘read donor key pair

A 4

| 4 start document donation]

6 nonce v

:| 7 M= [<u ED°">] s

Don

8 request signature of (M, &)

3 (dDon' EDon)

o 5 random nonce v

A 4
]

12 M= [(vavo"/’ﬂ]é

Don

< 13 generate symm. key kP°"

« 14 C; = [mi]kP°"
e 15 oc; == signou(C;)

16 send M', C;, {kPon] o,
ES =

ALP

1 17
<] 18
< 119
120
21
« 22
« 23
<] 24

< 9 check consent for u
10 oM = Signdgonslg“M, §>)

decrypt: (M, ¢, ome) == M' ® d3,,,
check consent type ¢

verify o g (USING E2opsig)

decrypt: (v, EP") := M ® df,,
validate nonce v

Look up uAtP given EDon

ALP>

verify oc, (using EP°")

store <uALP,C,-, {k,Dm‘] .
E

Figure 6.2: User donates document m;.

36

Copyright 2020 D4L data4life gGmbH. All rights reserved.

6.4. DONATE A DOCUMENT
CHAPTER 6. DATA DONATION

This enables the donation service to decrypt and assemble the following data
elements (steps 17 and 20):2

v, EDon, ¢, ome OC;, G, [k’DOn}

S
EALP

The donation service carries out the following verifications (the order does not
matter, all checks must pass):

e 18 Check that the consent is of correct type €.
19 Verify signature oy ¢ using E(S_-OnSig against (M, §). That is, verify that
consent was given.

e 21 Check whether the nonce v is, in fact, one that was issued by the donation
service recently.

22 Check that there is an ALP ID for key EP°" and retrieve it as u”LP.
23 Verify signature o, using EDP°n against C;.

If all checks pass, the ciphertexts of the donated document can be stored under

the ALP ID:
(%,] g (7],)

This corresponds to the objective we discussed in Section 6.2. This concludes
the document donation process (steps 25 and 26 being just formal returns). Note
that the donated documents are now stored at the donation service. In order to
analyze them in the ALP they must be transferred to it. This transfer does not
happen immediately. Otherwise, one could correlate traffic between the donation
service, ALP and the other services to possibly link donation requests. Each donated
document is assigned a retention date before which it will not be transferred to the
ALP. The retention date is chosen such that documents arriving at different dates
will get assigned identical retention dates. This leads to batches of documents that
can be transferred to the ALP. As a further security means the set of ALP IDs of the
documents awaiting transfer must exceed a minimum size before they are transferred.

6.5 Revocation

Users can at any time revoke their consent to be a data donor. Revocation comes in
two forms: temporary and permanent. Temporary revocation suspends the ability of
the user to donate data, but it keeps the donation key pair. That is, when the user
decides to be a donor again, the data can be associated with the same ALP ID it
used to. Permanent revocation deletes the user’s donor key pair. That is, when the
user wants do become a donor again, she would need to register anew as if she were
never a donor, thus creating a new donor key pair. Newly donated data ends up at
the ALP under a new ALP ID and is seen as if coming from a different person. We
illustrate the revocation steps in Figure 6.3.

8As before, we denote decryption of ciphertext M using key k by M ® k.

37 6.5. REVOCATION
Copyright 2020 D4L data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

X =

User:u UA:Browser‘ ‘ DS:Donation Service ‘ ‘ CS:Consent Service PHDP
! 1 revoke 7
_2 keep donor ID?
_ 3 Answer A__ |
A=y 4 fetch latest version of consent type x
5 consent text TX D
e EEERERETNV.
) 6 agrees to T¥
7 send consent (u, x, V, T) N
B oK ‘ 8 store (u, x, V. T)
o900k]
10 revoke donation consent n Rem
> store revocation
L 120 | v
A=n .
13 read donor key pair |
Don Don
AR e D
) 15 generate random nonce p
16 0, := signgoe({EP", p))
P Don
T =[],
18 send M]
l«1/19 decrypt: (EP", p,0,) := M ® d},,
) 20 verify: o, (using EP")
l«—_1/21 delete all mappings to EP°"
122 TT:={(1,p)
28 on:= signd[s)cnSig(ﬂ)
T . 24 store (TT, EP°") for 7 days
,,,,,,, O]
26 revoke consent with proof TTand onr [—)
> 27 verify on
« (using ESOHSig)
allow user to
e 290K :l register again
30 delete donor key pair |
I moc___________]
| fe---- 32 OK_ | B

Figure 6.3: User revokes donation consent.

38 6.5. REVOCATION
Copyright 2020 D4L data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

6.5.1 Steps 1 -3 : Decide on revocation type

The user decides to revoke the donation consent (1) and is asked whether the
revocation shall be temporary or permanent (2). Based on her answer (3), the
process dove-tails.

6.5.2 Steps 4 -12: Temporary revocation

Temporary revocation implies that we keep some information (namely the donor key
pair) in order to restore the donor status later on, if the user wants to. We need the
user’s consent to retain that information. The corresponding consent steps 4 —9 are
essentially the same as the consent steps 2 — 7 in Figure 6.1. The different consent
type x vs. & shall illustrate that the consent text is different. Steps 10— 12 introduce
another consent type n which represents the user’s actual intent to suspend or disable
her donor capability. This concludes the steps required for temporary revocation.

6.5.3 Steps 10— 18 : Initialize permanent revocation

For permanent revocation we will delete the user’s donor key pair. Hence, we do not
need to ask for permission to keep it and can skip steps 4—9 . Steps 10— 12 are
identical to the temporary revocation process and record the user’s intent to disable
her donor capability. Note, this covers only the formal intent, but proof (of the deletion
of the donor key mapping at the donation service) is required before the consent
service can accept a fresh future donor registration. Hence, the goal is to tell the
donation service to drop the records containing the user’s donation public key EP°",
and issue a cryptographic proof of this fact which can be checked by the consent
service.

The donation key pair is retrieved from PHDP in steps 13 and 14. Step 15
creates a random nonce p which we will include in subsequent communication to
prevent replay attacks. The revocation request we want to send in step 18 consists
of the ciphertext of the donor public key EP°", the nonce p, and the user’s signature
of the firsttwo (16 and 17).

6.5.4 Steps 19 — 25 : Delete donor key mapping

The donation service now decrypts the revocation request M (step 19) and verifies
the included signature o, which proves that the request originated from the user
(step [20). Next, all data associated with EP°" (for example, the ALP ID) is deleted
in step 21 . The deletion proof TT consists of the deletion timestamp 7, the nonce p,
and the donation service’s signature o of the two (steps 22 and 23). This proof is
stored by the donation service (under the donor public key EP°") for seven days. In
case the communication with the client is disrupted at this point in time, it may never
carry out the next steps 26 — 29 . This would prevent the user from ever becoming a
donor again (because the user never showed proof of the donor key mapping deletion

39 6.5. REVOCATION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

to the consent service). The caching of the proof TT and its signature enables the
client to come back later and receive the proof.

6.5.5 Steps 26 —29 : Prove mapping deletion

The user now shows the deletion proof and its signature to the consent service (26).
It will verify the signature (27), check that timestamp 7 has not expired, and record
that the user may apply as a donor again in the future (128). The proof is stored as
invalidated until its timestamp expires to prevent replay attacks.

Finally, the client can delete the donor key pair (steps 30 and 31) and conclude
the revocation process (132).

40 6.5. REVOCATION
Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 6. DATA DONATION

Part Il
Formal treatment

41

Copyright 2020 D4L data4life gGmbH. All rights reserved.

7 Cryptographic notation

This chapter introduces short-hand notations that we use to accurately, yet concisely,
define cryptographic protocols. We already implicitly used some notation in Chapter 2
and introduced some more in Section 3.1.

The main objectives for the formal notation are short names for cryptographic
symbols (such as keys, messages or tags) and the encryption itself. Further, the
notation should work at a whiteboard, on paper and have flavor that can be used in
plain ASCII (for example in source code, Markdown or Slack). We use the following
syntax to denote a cryptographic symbol or data element:

(1) g

It is @ main symbol (here: s) which can be decorated with one index and up to two
superscripts.

Symbol s

The main symbol is a single character that represents the type of object as listed in
Table 7.1. A lowercase symbol indicates that the object is protection-worthy and must
not be disclosed to the public. An uppercase symbol denotes an object which may (or
must) be made public for certain protocols to work."

Superscript A

The superscript is used to indicate a subtype when used for certain symbols, like keys
or passwords. See Table 7.2 for details.

Index b

We use the subscript for indexing or enumeration. The subscript itself can be complex
or comma-separated or both. See the examples in Table 7.3.

"This was inspired by the Go programming language where lowercase symbols are private while
uppercase symbols get exported.

42

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 7. CRYPTOGRAPHIC NOTATION

(2]
<
3
T
=3

Meaning

symmetric key
private key
public key
record
attachment
tag or token (clear from context)
salt value
password
, v other confidential message or value
, V other non-confidential message or value

I SV~ L Ymax

<

Table 7.1: Different types of cryptographic symbols.

Symbol Meaning

U user-related

A application-related

C common key

D data key

Don donation key

N attachment key

T tag-related

F function-derived (e. g. via a key derivation function)
S service-related

Table 7.2: Superscripts indicating subtypes of cryptographic symbols.

43

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 7. CRYPTOGRAPHIC NOTATION

Superscript (u)

We occasionally use this second superscript for tagging the symbol with a user ID wu,
if different users shall be differentiated explicitly. The superscript is written in paren-
theses.

Encryption

Typically, when denoting the encryption of some data x using a key k, some notation
of the following is used:

Enc(k, x) or Enck(x) or Ek(x)

This notation can take up quite some screen real estate if many ciphertexts are
part of the game (and this is the case for our platform). That is why we denote the
ciphertext of x using key k as follows:

~,

The precise cipher being used (symmetric or asymmetric) will be clear given the
key notation.

ASCII flavor

We want to use the notation also for source code comments as well as in Slack

communication. For this purpose we use the following ASCII rendering:
Wep o (u)sA_b

The main instances of the notation are listed in the following Table 7.3.

Symbol ASCII Meaning

dy du User private key (of implicit user)

(u1) gV (ul)dUor (u_1)dU User private key of user u;

EY EU User public key (of implicit user)

koC kC_0 Initial common key (of implicit user)

kT kT Tag encryption key (of implicit user)

(df E?) (dA_1, EA_1) Application key pair of app ID 1

(d® EZ) (dA_s, EA_s) Application key pair for web app session s

(d34n Eon) (dS_Don, ES_Don)

Donation service key pair

wp w_P User-chosen password

WR w_R Recovery password

k,E kF_P Key derived from user password wp

kE kF_R Key derived from recovery password wg

Copyright 2020 D4L data4life gGmbH. All rights reserved.

44

CHAPTER 7. CRYPTOGRAPHIC NOTATION

Symbol ASCII

Meaning

[d“} [dU]kF_P

kz

ri r_i

kP kD_i

KN KN_i

_r,} o [r_ilkD_i

. |

! }kg [kD_i]kC_0

aj a_i,jora_(i,j)
_ai,3] N [a_i,3]kN_i

ti j t_i,jort_(i,j)
_t,-,j} o [t_i,jlkT

User private key encrypted using password-
derived key

Record i

Data key of record r;

Attachment key of record r;

Ciphertext of record r; encrypted using data
key kP

Ciphertext of data key k,D encrypted using
initial common key k§
Jj-th attachment of record r;

Ciphertext of 3rd attachment of record r;

j-th tag of record r;

Ciphertext of j-th tag t; ; (of record r;) using
tag encryption key k'

Table 7.3: Examples of the cryptographic notation.

Copyright 2020 D4L data4life gGmbH. All rights reserved.

45

CHAPTER 7. CRYPTOGRAPHIC NOTATION

8 Account creation

When a new user registers an account with Data4Life, the following steps are carried
out (see also Section 3.2 for a shorter but less precise description).

Client side

In the client application, the user enters the values shown in Table 8.1. A hash of the
entered password is checked against the haveibeenpwned API [1] and in case of a
positive result the user must choose another password. The same check is carried
out when users want to change their password. The client application then computes
and generates the data listed in Table 8.2. The data that gets sent to the server is
listed in Table 8.3.

Server side

Most of the user registration payload becomes a row in the users table. The pass-
word hashes Hp and Hgr are hashed again using bcrypt [18] to form Hp and Hg,
respectively. The user public key and the encrypted initial common key become the

Zero permission
mo:= (VB ([0 3):

See Figure 8.1 for a graph depicting the data dependencies of the user registration
payload.

Material Description

Wy, . User uenters e-mail address

wp User u enters password

(v)

Table 8.1: Data required to be entered by the user when registering a new account.

46

Copyright 2020 DAL data4life gGmbH. All rights reserved. CHAPTER 8. ACCOUNT CREATION

Material

Description

s, User password salt

() kE Derive key (WkE := PBKDF2((“)wp, (V)S,, N) with salt (*)S,
and N iterations

() wg Generate recovery password (BIP-39 mnemonic)

9SS, Recovery password salt

() K Derive key (WkE := PBKDF2((“)wg, (*)Sp, N) with salt (S,
and N iterations

(1) gV, (”)EU> Generate user key pair

(W k§ Generate initial common key

(u) T Generate tag encryption key
Table 8.2: Automatically generated data by the client.

Material Description

Wy User e-mail address

Hp User password hash Hp := PBKDF2((“)wp, 0, N)

Hg Recovery password hash Hg := PBKDF2((*)wg, 0, N)

(u) U User public key

[(U)du] (D KE

[(U)du] (K
u)SP

(
(U)SR
45

o]

(u) EV

() k§

User-password-encrypted user private key

Recovery-password-encrypted user private key

User password salt
Recovery password salt

Encrypted common key

Encrypted tag encryption key

Copyright 2020 D4L data4life gGmbH. All rights reserved.

Table 8.3: User registration payload that gets sent to the server.

47

CHAPTER 8. ACCOUNT CREATION

Crypto Bluebook

"U0JB8IO JUNODDR JBSN 10) POPasU SIUBLIBIS BIEp JO Sejouspuadad : | g ainbi4

[reWa ™A

4 9inp]

¥ Pinp]

0 il

1dAddq

n3afo o]

y

¢

d

dH

JIeWS A

dSs

d $inp]

¥ PINp]

0 i)

4 H

nato~il

peojAed uonensibay

dS

np

iR

0 D)

n3

ds

paiesauab Ajwopuey

CHAPTER 8. ACCOUNT CREATION

48

Copyright 2020 D4L data4life gGmbH. All rights reserved.

Part Il
Appendices

49

Copyright 2020 D4L data4life gGmbH. All rights reserved.

A

[1]

[2]

[3]
[4]

[5]

[6]

[7]
[8]
[9]
[10]

[11]

Bibliography

‘'—have i been pwned? URL.: https://haveibeenpwned.com/ (visited on 07/30/2020)
(cit. on pp. 17, 46).

Jean-Philippe Aumasson. Serious Cryptography: A Practical Introduction to
Modern Encryption. USA: No Starch Press, 2017. ISBN: 978-1-59327-826-7
(cit.onp. 7).

Authenticated encryption. Wikipedia. URL: https://en.wikipedia . org/wiki/
Authenticated_encryption (visited on 05/05/2020) (cit. on p. 11).

Mihir Bellare and Phillip Rogaway. “Optimal Asymmetric Encryption — How to
Encrypt with RSA”. In: Springer-Verlag, 1995, pp. 92-111 (cit. on pp. 12, 52).

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246. RFC Editor, Aug. 2008. URL: http://www.rfc-editor.org/rfc/
rfc5246.txt (cit. on p. 14).

Documentation FHIR v4.0.1. HL7 FHIR Website. URL: https://www.hl7.org/fhir/
documentation.html (visited on 05/13/2020) (cit. on p. 23).

Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. Tech. rep. SP 800-38D. NIST, 2007.
URL: https://doi.org/10.6028/NIST.SP.800-38D (cit. on p. 10).

Morris J. Dworkin et al. Advanced Encryption Standard (AES). Tech. rep. NIST
FIPS 197. NIST, 2001. URL: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
197.pdf (cit. on pp. 7, 52).

T. Elgamal. “A public key cryptosystem and a signature scheme based on
discrete logarithms”. In: IEEE Transactions on Information Theory 31.4 (1985),
pp. 469—-472 (cit. on p. 12).

Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-
neering: Design Principles and Practical Applications. Wiley Publishing, Inc.,
2010. ISBN: 978-0-470-47424-2 (cit. on pp. 5, 7, 9, 53).

D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. RFC Editor, Oct.
2012. URL: http://www.rfc-editor.org/rfc/rfc6749.txt (cit. on pp. 20, 28).

50

Copyright 2020 DAL data4life gGmbH. All rights reserved. APPENDIX A. BIBLIOGRAPHY

https://haveibeenpwned.com/
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://www.hl7.org/fhir/documentation.html
https://www.hl7.org/fhir/documentation.html
https://doi.org/10.6028/NIST.SP.800-38D
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://www.rfc-editor.org/rfc/rfc6749.txt

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519.
RFC Editor, May 2015. URL: http://www.rfc-editor.org/rfc/rfc7519.txt (cit. on
p. 19).

B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898. RFC Editor, Sept. 2000. URL: http://www.rfc-editor.org/rfc/rfc2898.
txt (cit. on p. 19).

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. 1st. USA: CRC Press, Inc., 1997. ISBN: 978-0-84-
938523-0 (cit. on pp. 7, 12).

Mnemonic code for generating deterministic keys. Github.com. URL: https://
github.com/bitcoin/bips/blob/master/bip-0039.mediawiki (visited on 05/07/2020)
(cit. on p. 17).

National Institute of Standards and Technology. Data Encryption Standard
(DES). Tech. rep. FIPS PUB 46-2. NIST, 1993. URL: https://doi.org/10.6028/
NIST.FIPS.46-2 (cit. on pp. 7, 52).

Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for
Students and Practitioners. 1st. Springer Publishing Company, Inc., 2009.
ISBN: 978-3-642-04100-6 (cit. on p. 7).

Niels Provos and David Maziéres. “A Future-Adaptive Password Scheme”. In:
Proceedings of the Annual Conference on USENIX Annual Technical Confer-
ence. ATEC '99. Monterey, California: USENIX Association, 1999, p. 32 (cit. on
pp. 19, 46).

R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”. In: Communications of the ACM
21.2 (Feb. 1978), pp. 120—126. ISSN: 0001-0782. DOI: 10.1145/359340.
359342. URL: https://doi.org/10.1145/359340.359342 (cit. on p. 12).

Bruce Schneier and Phil Sutherland. Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C. 2nd. USA: John Wiley & Sons, Inc., 1995. ISBN:
978-0-471-12845-8 (cit. on p. 7).

51

Copyright 2020 DAL data4life gGmbH. All rights reserved. APPENDIX A. BIBLIOGRAPHY

http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc2898.txt
http://www.rfc-editor.org/rfc/rfc2898.txt
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://doi.org/10.6028/NIST.FIPS.46-2
https://doi.org/10.6028/NIST.FIPS.46-2
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342

B Glossary

Term Abbrev. Definition

Advanced Encryption AES Symmetric cipher for encryption and decryption of

Standard data [8]

Analytics Platform ALP Data analysis platform for de-identified healthcare
data

authenticated encryp- A cipher which does not only provide confidential-

tion ity, but also message authenticity.

authenticated encryp- AEAD Authenticated encryption where some additional

tion with associated data can be added which is not encrypted, but

data covered by the authentication tag.

authentication tag Cryptographic checksum that guarantees the in-
tegrity of a ciphertext.

common key Symmetric key used to encrypt data keys and
attachment keys.

Data Encryption DES Outdated symmetric cipher for encryption and

Standard decryption of data [16]

end-to-end encryp- E2EE Encryption and decryption of healthcare data oc-

tion cur at the client. The server never gets in contact
with unencrypted (plaintext) healthcare user data.

initialization vector v Random data that is used as the “zeroth” plaintext
block to start encryption.

mode of operation Algorithm to iteratively apply a (fixed-size) block
cipher to arbitrary input message lengths.

Optimal asymmetric RSA- Padding scheme used in conjunction with RSA

encryption padding OAEP that is proved secure against certain attack

using RSA

types [4].

Copyright 2020 D4L data4life gGmbH. All rights reserved.

52

Glossary

Term Abbrev.
padding

Definition

Process of extending a plaintext to give it a length
that is a multiple of the supported block size of
the used symmetric cipher. Also, it is used with
asymmetric encryption to randomize the plaintext
in order to avoid certain attack scenarios [10].

Personal Health Data PHDP
Platform

Data storage platform using end-to-end encryption
for secure healthcare data

tag encryption key

Symmetric key used to encrypt records tags.

user private key

Private key of an RSA key pair created at user reg-
istration and valid throughout the account lifetime.

user public key

Public key of an RSA key pair created at user reg-
istration and valid throughout the account lifetime.

Copyright 2020 D4L data4life gGmbH. All rights reserved.

53 Glossary

Glossary

C Change history

Version Date Remarks

1.0.0 2020-05-13 Initial revision

1.1.0 2020-05-20 Add data sharing, crypto notation and examples
1.1.1 2020-05-25 Adjust wording, fix typo

1.1.2 2020-05-28 Add acknowledgments

1.1.3 2020-06-05 Fix typos

1.1.4 2020-06-06 Adjusted profession wording

1.2.0 2020-06-08 Streamline chapters

1.2.1 2020-06-11 Incorporate feedback

1.2.2 2020-07-08 Fix typo, fix reference

1.3.0 2020-07-09 Add data donation chapter

1.3.1 2020-07-30 Add information on password checks
1.3.2 2020-08-17 Fix wording in data ingestion chapter

Copyright 2020 D4L data4life gGmbH. All rights reserved.

54

APPENDIX C. CHANGE HISTORY

D Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research
and innovation program under the grant agreement No. 826117: Smart4Health —
Building a citizen-centered EU-EHR exchange for personalized health.

Copyright 2020 DAL data4life gGmbH. All rights reserved. 55 APPENDIX D. ACKNOWLEDGMENTS

Copyright 2020 D4L data4life gGmbH. All rights reserved.

data
4life

	I Personal Health Data Platform
	Introduction
	End-to-end encryption
	Document structure

	Cryptographic basics
	Symmetric encryption
	Asymmetric encryption
	Hybrid encryption

	Secure keys
	Keys overview
	Account creation
	Login
	Account recovery
	Key maps

	Data model and data access
	Data ingestion
	Onboarding
	Document upload
	Document access by client

	Data donation
	Requirements
	Design Decisions
	Register as a donor
	Donate a document
	Revocation

	II Formal treatment
	Cryptographic notation
	Account creation

	III Appendices
	Bibliography
	Glossary
	Change history
	Acknowledgments

